HERITAGE THERMAL SERVICES 1250 St. George Street East Liverpool, Ohio 43920-3400 Phone: 330-385-7337 Fax: 330-385-7813 www.heritage-thermal.com January 31, 2014 VIA UPS and OEPA AIR SERVICES Mr. George Czerniak, Chief (UPS) U.S. EPA Region V Air Enforcement and Compliance Assurance Branch Mail Code AE-17J 77 West Jackson Chicago, IL 60604 Mr. Erik Bewley (Air Services) OEPA-DAPC-NEDO 2110 E. Aurora Road Twinsburg, OH 44087 OHSAS 18001: 2007 ISO 14001: 2004 ISO 9001: 2008 RE: HERITAGE THERMAL SERVICES SEMI-ANNUAL STARTUP, SHUTDOWN, AND MALFUNCTION REPORT & SEMI-ANNUAL EXCESS EMISSIONS AND CMS REPORT ## Greetings: Please find enclosed a written report entitled Semi-Annual Startup, Shutdown, and Malfunction Report and Semi-Annual Excess Emission and CMS Report for Heritage Thermal Services. These reports are required by 40 CFR 63.10 and cover the time period of July 1, 2013 through December 31, 2013. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are certain penalties for submitting false information including the possibility of fine and imprisonment for knowing violations. Thank you and if you have any questions or comments, please call me at the above number. Sincerely, Stewart Fletcher General Manager for HI- Heritage Thermal Services # SEMI-ANNUAL STARTUP, SHUTDOWN, AND MALFUNCTION REPORT & SEMI-ANNUAL EXCESS EMISSION AND CMS REPORT For **Heritage Thermal Services** January 31, 2014 ## Section I - General Information ## A. Facility Information | Facility ID: | 02-15-02-0233 | | |------------------------|---------------------------|--| | Responsible Official's | Stewart Fletcher | | | Name / Title: | General Manager | | | Street Address: | 1250 Saint George Street | | | City: | East Liverpool | | | State: | Ohio | | | Zip Code: | 43920 | | | Facility Name: | Heritage Thermal Services | | | Facility Local Contact | Vincent Waggle | | | Name: | Environmental Engineer | | | B. R | televant | standard(s) | or other | requirement(s) | that | is/are the | basis | for t | his rep | ort: | |------|----------|-------------|----------|----------------|------|------------|-------|-------|---------|------| |------|----------|-------------|----------|----------------|------|------------|-------|-------|---------|------| | 63. | 10(d) | (5)(i) | - Periodic | Startup. | Shutdown, and | Malfunction | Reports | |-----|-------|--------|------------|----------|---------------|-------------|---------| |-----|-------|--------|------------|----------|---------------|-------------|---------| | C. Are you requesting a waiver of recordkeeping and/or reporting requirement | under | the | |--|-------|-----| | applicable relevant standard(s) in conjunction with this report? | | | ☐ Yes ☑ No If you answered yes, you must submit the application for a waiver of recordkeeping and/or reporting requirements together with this report. The application for waiver should include whatever information you consider useful to convince the Administrator that a waiver of recordkeeping or recording is warranted. (63.10(f)(3) ## Section II - Certification Based upon information and belief formed after a reasonable inquiry, I as a responsible official of the above-mentioned facility, certify the information contained in this report is accurate and true to the best of my knowledge. | Stewart Fletcher, General Manager | | | |-----------------------------------|---------------|--| | Signature: Star HE | Date: 1/30/14 | | HERITAGE THERMAL SERVICES SEMI-ANNUAL SSMP, EE, & CMS REPORT January 31, 2014 ## Section III - Startup, Shutdown, and Malfunction Reports A. Startup, Shutdown, or Malfunction Actions All actions taken by Heritage Thermal Services during startup, shutdown, or malfunction events during the reporting period of **July 1, 2013 through December 31, 2013** were consistent with the procedures specified in the facility's Startup, Shutdown, and Malfunction Plan. #### B. Malfunctions Please find in the table below a list of each malfunction, the durations, and a brief description of the type of malfunction that occurred during the reporting period of July 1, 2013 through December 31. See next page for completed table | | and the same of th | | | | | | |--------------------------------|--|---------------|----------|--------------------------------------|---|--| | Name | Start Time | End Time | Duration | Cause (report) | Cause
Description | Corrective
Actions | | ТНС | 7/7/13 1:21 | 7/7/13 2:20 | 58.50 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset led to THC event. | Reviewed waste feeds. Restarted unit. | | тнс | 7/9/13 21:22 | 7/9/13 22:21 | 58.53 | Malfunction
Prior AWFCO | Poor
combustion
during WFCO
caused THC
event. | Restarted unit. | | ТНС | 7/12/13 12:58 | 7/12/13 13:57 | 58.57 | Malfunction
Lance Purge | Unexpected
purge of direct
drum lance
caused THC. | Checked control valve, Restarted unit. | | SCC
Pressure
Using Seals | 7/13/13 12:59 | 7/13/13 13:00 | 1.03 | Malfunction
Clinker Fell | Very large ash
fall caused duct
damage and
shutdown. | Immediate
shutdown.
Repair duct. | | тнс | 7/13/13 13:03 | 7/13/13 14:03 | 59.57 | Shutdown Prior
WFCO | Very large ash fall caused duct damage and shutdown. | Immediate
shutdown.
Repair duct. | | SCC
Temperature | 7/13/13 13:07 | 7/13/13 15:57 | 169.39 | Shutdown Prior
WFCO | Very large ash fall caused duct damage and shutdown. | Immediate
shutdown.
Repair duct. | | Kiln
Temperature | 7/13/13 13:18 | 7/13/13 15:57 | 158.46 | Shutdown Prior
WFCO | Very large ash fall caused duct damage and shutdown. | Immediate
shutdown.
Repair duct. | | Process Gas
Flow | 7/13/13 14:02 | 7/13/13 15:57 | 114.49 | Shutdown Prior
WFCO | Very large ash fall caused duct damage and shutdown. | Immediate
shutdown.
Repair duct. | | THC | 7/13/13 14:25 | 7/13/13 14:57 | 31.35 | Shutdown Prior
WFCO | Very large ash fall caused duct damage and shutdown. | Immediate
shutdown.
Repair duct. | | Scrubber
ECIS
Pressure | 7/13/13 14:25 | 7/13/13 15:57 | 91.36 | Shutdown Prior
WFCO | Very large ash
fall caused duct
damage and
shutdown. | Immediate
shutdown.
Repair duct. | | Name | Start Time | End Time | Duration | Cause (report) | Cause
Description | Corrective
Actions | |------------------|---------------|---------------|----------|--------------------------------------|---|---| | SDA ECIS
Flow | 8/1/13 21:19 | 8/1/13 21:51 | 31.58 | Malfunction
ECIS Screw | Glitch in PLC
shutdown
carbon feed
screw. | Reset controller.
Restarted unit. | | THC | 8/2/13 2:16 | 8/2/13 2:19 | 3.02 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion
upset led to
THC event. | Reviewed waste feeds. Restarted unit. | | тнс | 8/7/13 9:59 | 8/7/13 10:56 | 56.52 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion
upset led to
THC event. | Reviewed waste feeds. Restarted unit. | | THC | 8/11/13 8:48 | 8/11/13 9:46 | 57.57 | Malfunction
Lance Purge | Unexpected
purge of direct
drum lance
caused THC. | Cleared lance.
Restarted unit. |
 ТНС | 8/15/13 19:32 | 8/15/13 20:19 | 47.01 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion
upset led to
THC event. | Reviewed waste feeds. Restarted unit. | | Scrubber pH | 8/17/13 4:19 | 8/17/13 4:41 | 22.41 | Malfunction
Caustic Pump | Caustic pump
failure caused
pH rise in
scrubber. | Started second
pump. Replaced
seal. | | Scrubber pH | 8/17/13 4:50 | 8/17/13 5:34 | 43.56 | Malfunction
Caustic Pump | Caustic pump
failure caused
pH rise in
scrubber. | Started second
pump. Replaced
seal. | | ТНС | 8/25/13 1:11 | 8/25/13 2:11 | 59.57 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion
upset led to
THC event. | Reviewed waste feeds. Restarted unit. | | THC | 8/26/13 5:14 | 8/26/13 6:15 | 60.27 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion
upset led to
THC event. | Reviewed waste feeds. Restarted unit. | | | | | | *************************************** | | | |---------------------|---------------|---------------|----------|---|---|--| | Name | Start Time | End Time | Duration | Cause (report) | Cause
Description | Corrective
Actions | | RJ DP | 8/30/13 15:10 | 8/30/13 16:08 | 57.50 | Malfunction
Instrument | Boiler level
switch
malfunction
caused ID fan
shutdown. | Repaired
switch.
Restarted unit. | | RJ DP | 8/30/13 16:32 | 8/30/13 17:17 | 44.58 | Malfunction
Instrument | Boiler level
switch
malfunction
caused ID fan
shutdown. | Repaired
switch.
Restarted unit. | | SDA ECIS
Flow | 9/5/13 2:11 | 9/5/13 2:20 | 9.06 | Malfunction
ECIS Belt | Broken belt on
ECIS blower
caused carbon
flow loss. | Replaced belt.
Restarted unit.
WO#133602 | | тнс | 9/12/13 2:16 | 9/12/13 3:16 | 59.55 | Malfunction
Lance Plugging | Plugging in lance caused unexpected purge resulting in poor combustion. | Cleared lance.
Restarted unit. | | тнс | 9/18/13 14:06 | 9/18/13 15:06 | 60.22 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion
upset led to
THC event. | Reviewed waste feeds. Restarted unit. | | RJ DP | 9/22/13 16:55 | 9/22/13 17:53 | 58.21 | Malfunction
Instrument | Instrument
malfunction
caused loss of
system fans. | Stabilized ESP
and restarted
unit. | | SCC
Temperature | 9/24/13 6:38 | 9/24/13 7:54 | 75.58 | Malfunction
Instrument | Steam positioner valve went bad causing steam loss and shutdown. | Repaired
positioner.
Regained steam. | | Kiln
Temperature | 9/24/13 7:00 | 9/24/13 7:35 | 35.11 | Malfunction
Instrument | Steam positioner valve went bad causing steam loss and shutdown. | Repaired
positioner.
Regained steam. | | Name | Start Time | End Time | Duration | Cause (report) | Cause
Description | Corrective
Actions | |------------------|-------------------|-------------------|----------|--------------------------------------|---|---| | ТНС | 9/25/13 17:03 | 9/25/13 17:12 | 8.58 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion
upset led to
THC event. | Reviewed waste feeds. Restarted unit. | | THC | 9/30/13 2:56 | 9/30/13 3:30 | 34.00 | Malfunction
Instrument | Program logic
failed on drum
feed safeguard. | Restarted unit. Corrected logic. | | тнс | 10/2/13 10:32 | 10/2/13 10:39 | 7.15 | Malfunction
Lance Purge | Plug and then
purge of direct
drum lance
caused THC. | Cleared lance.
Restarted unit. | | THC | 10/6/13 3:30 | 10/6/13 4:15 | 45.06 | Malfunction
Lance Purge | Plug and then
purge of direct
drum lance
caused THC. | Cleared lance.
Restarted unit. | | Total PB
Flow | 10/8/13 12:03 | 10/8/13 13:06 | 63.16 | Malfunction
Scrubber Pump | Leaks on the
2nd stage
scrubber pump
caused flow
loss. | Replaced
elbows.
Restarted unit.
WO#133954 | | ТНС | 10/9/13 1:40 | 10/9/13 2:21 | 40.16 | Malfunction
Combustion
Anomaly | Unexpected and
unpreventable
combustion
upset led to
THC event. | Reviewed waste feeds. Restarted unit. | | тнс | 10/13/13 | 10/13/13
19:53 | 12.55 | Malfunction Lance Purge | Purge of sludge
2 lance caused
poor
combustion and
THC. | Cleared line. | | ТНС | 10/24/13 9:23 | 10/24/13
10:21 | 58.02 | Malfunction
Lance Purge | Unexpected lance purge caused combustion upset. | Cleared lance.
Restarted unit. | | THC | 10/24/13
20:17 | 10/24/13
21:11 | 53.44 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset led to THC event. | Reviewed waste feeds. Restarted unit. | | | 1 300.00 | _ | r" | | | | |--------------------------------|-------------------|-------------------|----------|--------------------------------------|--|---| | Name | Start Time | End Time | Duration | Cause (report) | Cause
Description | Corrective
Actions | | SCC
Pressure
Using Seals | 10/30/13
12:56 | 10/30/13
12:56 | 0.30 | Malfunction
Clinker Fell | Clinker ash fell
into quench
cause slight seal
pressure event | Maintained
draft using ID
Fan damper. | | Lance
Atomization | 11/1/13 1:34 | 11/1/13 1:36 | 1.36 | Malfunction
Power Failure | Brief loss of
power caused
compressor
shutdown and
air loss. | Regained air
pressure.
Restarted unit. | | SCC
Temperature | 11/1/13 1:43 | 11/1/13 2:11 | 28.10 | Malfunction
Prior AWFCO | Prior AWFCO
caused lance
shutdown and
temp loss. | Regained lances
and temp.
Restarted unit. | | ТНС | 11/9/13 18:13 : | 11/9/13 19:02 | 49.03 | Malfunction
Lance Purge | Purging of
slurry lance
caused poor
combustion and
THC. | Cleared lance,
Restarted unit. | | Scrubber
ECIS
Pressure | 11/11/13
10:30 | 11/11/13 | 15.05 | Malfunction
ECIS Hose | Unit shutdown to repair ECIS hose. | Replace ECIS
hoses. Restarted
unit. | | Scrubber
ECIS
Pressure | 12/3/13 1:51 | 12/3/13 3:28 | 97.02 | Malfunction
ECIS Screw | Screw
malfunction
caused carbon
flow loss | Repaired Screw.
Restarted unit. | | THC | 12/6/13 12:53 | 12/6/13 13:48 | 54.54 | Malfunction
Lance Purge | Unexpected
lance purge
cause poor
combustion and
THC | Cleared lance.
Restarted unit. | | SCC
Pressure
Using Seals | 12/9/13 22:48 | 12/9/13 22:48 | 0.28 | Malfunction
Combustion
Anomaly | Unexpected and unpreventable combustion upset led to pressure spike. | Maintained
draft using ID
fan damper. | | SCC
Temperature | 12/25/13 1:18 | 12/25/13 1:26 | 8.33 | Malfunction Lance Plugging | Solid in high
BTU lance
caused loss of
flow and temp. | Cleared lance.
Restarted unit. | | SDA ECIS
Flow | 12/30/13
19:13 | 12/30/13
19:43 | 30.25 | Malfunction
ECIS Screw | ECIS Screw
plugged cauing
loss of flow. | Cleared screw.
Restarted unit. | # C. Startup, Shutdown, or Malfunction Plan Revision History | DATE | Revision Number | Comment | |------------|-----------------|--| | 9/30/2003 | 0 | Initial Plan | | 2/27/2004 | 1 | ESP OPLs added. Malfunction list updated. | | 6/23/2005 | 2 | Revised section on operating modes. | | 10/27/2006 | 3 | RCRA Permit modifications. Malfunction list updated. | | 3/15/2007 | 4 | Malfunction list updated and comments added addressing instances beyond the operator's control. | | 6/6/2007 | 5 | Malfunction list updated and further comments added addressing instances beyond the operator's control. | | 10/16/2007 | 6 | Corrected minor deficiencies noted by OEPA. | | 9/1/2008 | 7 | Revised to reflect facility name change | | 6/12/2009 | 8 | This revision included, in Section 1.6.3.1, more detailed descriptions of the most common malfunction events that occur at the facility. It also included a description of data collection procedures during times when residence time expires while an exceedance event is taking place in Section 1.6.3. | | 2/9/2011 | 9 | Revision created to reflect OPL changes resulting from the MACT CPT completed in 2010. Additionally, new malfunctions were added to Table 2-2. | | 5/1/2011 | 10 | Revision incorporated a discussion of the exceedance investigation process and procedures. Table 2-2 was also slightly revised to include addition malfunctions. | | 7/5/2012 | 11 | Revision 11 (7/5/2012) created to improve language surrounding the reporting and documentation during startup and shutdown events. | | 10/15/2013 | 12 | Revision 12 (10/15/2013) created to account for facility name change. | ## SEMI-ANNUAL EXCESS EMISSION AND CMS REPORT # Section I - General Information # A. Facility Information | Facility ID: | 02-15-0233 | | |--------------------------------------|------------------------------------|--| | Responsible Official's Name / Title: | Stewart Fletcher / General Manager | | | Street Address: | 1250 Saint George Street | | | City: | East Liverpool | | | State: | Ohio | | | Zip Code: | 43920 | | | Facility Name: | Heritage Thermal Services | | | Facility Local Contact | Vincent Waggle | | | Name: | Environmental Engineer | | | Zip Code: | 43920 | |---
--| | Facility Name: | Heritage Thermal Services | | Facility Local Contact | Vincent Waggle | | Name: | Environmental Engineer | | 63.10(e)(3) – Excess Emis | r other requirement(s) that is/are the basis for this report: ssions and Continuous Monitoring System Performance Report vaiver of recordkeeping and/or reporting requirements under the ard(s) in conjunction with this report? | | | | | □ Yes | 3 No | | reporting requirements to
whatever information you | must submit the application for a waiver of recordkeeping and/or gether with this report. The application for waiver should include consider useful to convince the Administrator that a waiver of g is warranted. (63.10(f)(3)) | | D. Check the box that cor | responds to the reports you are submitting: | | | 01.0 | # ☐ Summary Report Only (Complete Sections II and IV) Excess Emission and CMS Performance Report and Summary Report (Complete Sections II, III, and IV). # Section II - Certification fficial of d true | | ormed after a reasonable inquiry, I as a responsible of the information contained in this report is accurate an | |----------------------------------|---| | Stewart Fletcher, General Manage | | | Signature: | Date: 1/3 0/14 | | | Page 11 of 30 | HERITAGE THERMAL SERVICES SEMI-ANNUAL SSMP, EE, & CMS REPORT January 31, 2014 # Section III - Excess Emissions and CMS Performance Report | A. Excess Emissions | |---| | Have any excess emissions or exceedances of a parameter occurred during this reporting period? Yes □ No | | 2. If you answered yes, complete the following table for each period of excess emissions and/or parameter monitoring exceedances, as defined in the relevant standard(s), that occurred during periods other than startups, shutdowns, and/or malfunctions of your affected source. (63.10(c)(7)(11)) | | See next page for completed table. | | Name | Start Time | End Time | Duration | Cause
(report) | Cause
Description | Corrective
Actions | |--------------------------------|---------------|---------------|----------|-------------------------------------|---|---| | тнс | 7/1/13 5:07 | 7/1/13 6:06 | 58.55 | Operator
Error Feed
Mix | Improper feed
mix caused poor
combustion and
THC. | Reduced feeds.
Restarted unit. | | THC | 7/5/13 22:14 | 7/5/13 23:13 | 59.24 | Operator
Error Feed
Prep | Improper feed
prep caused poor
combustion and
THC. | Reduced
charges.
Restarted unit. | | THC | 7/6/13 7:19 | 7/6/13 8:18 | 58.59 | Operator
Error Feed
Prep | Improper feed prep caused poor combustion and THC. | Reduced
charges.
Restarted unit. | | SCC
Pressure
Using Seals | 7/9/13 21:18 | 7/9/13 21:18 | 0.28 | Operator
Error Poor
Operation | Improper draft
management
caused loss of
negative
pressure. | Increase draft.
Restart unit. | | ТНС | 7/12/13 14:33 | 7/12/13 15:32 | 58,57 | Operator
Error Poor
Operation | Direct drum
operator flushed
lance too hard
causing THC. | Restarted unit. Revised profile instructions. | | THC | 8/16/13 0:06 | 8/16/13 0:37 | 30.56 | Operator
Error Poor
Operation | Operator
charged waste
during period of
high THC
causing
exceedance. | Restarted unit. | | | | | | | | | | ТНС | 8/21/13 20:27 | 8/21/13 21:27 | 59.23 | Operator
Error Feed
Prep | Improper feed prep caused combustion upset and THC. | Restart unit.
Reduce charges. | | | | | | Cause | Cause | Corrective | |------|---------------|---------------|----------|--------------------------------------|--|--| | Name | Start Time | End Time | Duration | (report) | Description | Actions | | тнс | 8/31/13 20:11 | 8/31/13 21:07 | 56.00 | Operator
Error Poor
Inspection | Improper waste inspection led to poor combustion and THC. | Restarted unit.
Reviewed
procedures. | | тнс | 9/5/13 13:33 | 9/5/13 14:31 | 57.48 | Operator
Error Feed
Prep | Improper feed prep caused combustion upset and THC. | Restarted unit.
Reduced
charges. | | THC | 9/10/13 20:20 | 9/10/13 21:20 | 59.55 | Operator
Error Feed
Prep | Improper feed prep caused combustion upset and THC. | Restarted unit.
Reduced
charges. | | THC | 9/17/13 1:13 | 9/17/13 1:43 | 30.02 | Operator
Error Low
Air | Inadequate combustion air caused failure to control THC. | Operator increased air and restarted unit. | | THC | 9/23/13 21:05 | 9/23/13 22:04 | 58.53 | Operator
Error Feed
Prep | Improper feed prep caused combustion upset and THC. | Restarted unit.
Reduced
charges. | | THC | 9/29/13 23:59 | 9/30/13 0:59 | 60.00 | Operator
Error Feed
Prep | Improper feed prep caused combustion upset and THC. | Restarted unit. Retrained technicians. | | | | | | | | | | THC | 10/4/13 15:36 | 10/4/13 16:33 | 56.58 | Operator
Error Feed
Prep | Improper feed
prep caused
combustion
upset and THC. | Restarted unit.
Reduced
charges. | | Ctart Times | End Time | Duration | Cause | Cause | Corrective | |-------------------|---|----------|-------------------------------------|--|--| | Start Time | End Time | Duration | (report) | Description | Actions | | 10/14/13
20:29 | 10/14/13
21:28 | 58.53 | Operator
Error Feed
Prep | Improper feed prep caused combustion upset and THC. | Restarted unit.
Reduced
charges. | | 10/24/13 7:06 | 10/24/13 8:04 | 58.06 | Operator
Error Feed
Prep | Improper feed prep caused combustion upset and THC. | Restarted unit.
Reduced
charges. | | 10/24/13 8:14 | 10/24/13 8:20 | 6.21 | Operator
Error Poor
Operation | Operator failed to maintain temperature causing WFCO. | Regained temp.
Restarted unit. | | 11/15/13
22:56 | 11/15/13
23:54 | 57.31 | Operator
Error Feed
Prep | Improper feed prep caused combustion upset and THC. | Reduced charge
size. Restarted
unit. | | 11/19/13 1:14 | 11/19/13 1:15 | 0.30 | Operator
Error Feed
Prep | Improper feed prep caused brief pressure spike. | Maintained draft using ID Fan damper. | | 11/22/13 4:44 | 11/22/13 5:44 | 60.01 | Operator
Error Feed
Prep | Improper feed prep caused combustion upset and THC. | Reduced charge
size. Restarted
unit. | | 11/26/13 | 11/26/13 | | Operator
Error Feed | Improper feed prep caused combustion | Reduced charge
size. Restarted | | | 20:29
10/24/13 7:06
10/24/13 8:14
11/15/13
22:56
11/19/13 1:14 | 10/14/13 | 10/14/13 | 10/14/13 10/14/13 58.53 Comparator Error Feed Prep | Start Time | | | G | r. Im | | Cause | Cause | Corrective | |--------------------------------|---------------|-------------------|----------|-------------------------------------|--|--| | Name | Start Time | End Time | Duration | (report) | Description | Actions | | SCC
Pressure
Using Seals | 12/4/13 14:18 | 12/4/13 14:19 | 0.35 | Operator
Error Poor
Operation | Operator Error
caused unit shut
down and OPL
loss | Restarted unit.
Re-trained
operator | | RJ DP | 12/4/13 14:22 | 12/4/13 15:17 | 54.47 | Operator
Error Poor
Operation | Operator Error
caused unit shut
down and OPL
loss | Restarted unit.
Re-trained
operator | | THC | 12/4/13 16:09 | 12/4/13 17:03 | 54.02 | Operator
Error Feed
Prep | Improper feed prep caused combustion upset and THC. | Reduced charge
size. Restarted
unit. | | RJ
Blowdown
Flow | 12/4/13 19:42 | 12/4/13 19:46 | 4.04 | Operator
Error Poor
Operation | Poor operation
during repairs
led to OPL loss | Completed repairs. Restarted unit. | | ТНС | 12/14/13 9:07 | 12/14/13
10:07 | 59.24 | Operator
Error Feed
Prep | Improper feed prep caused combustion upset and THC. | Reduced charge
size. Restarted
unit. | #### B. CMS Performance - 1. Has a CMS been inoperative (except for zero/low-level and high-level checks), out of control (as defined in 63.8(c)(7)(i)), repaired, or adjusted during this reporting period? Yes No - 2. If you answered yes, complete the following table for each period a CMS was out of control, repaired, or adjusted: (63.10(c)(5)-(6), (10)-(12); 63.8(c)(8). | CMS
Type | Mfg | Process
ID | Start Date | Completion
Date | Nature & Cause of Malfunction (if any) | Corrective Actions Taken or Preventative Measures Adopted | Nature of
Repairs or
Adjustments
Made to
Inoperable or
OOC CMS | |-------------|--------|---------------------|------------|--------------------|--|---|---| | THC | CAI | Stack
monitor #2 | 9/5/2013 | 9/6/2013 | | | Manual
Calibration | | Wet O2 | Ametex | Stack
monitor #2 | 10/2/2013 | 10/3/2013 | | Manual
Calibration | Manual
Calibration | 3. Indicate the total process operating time during the reporting period.
(63.10(c)(13)) Total process operating time (days): Days in reporting period: 184 Facility total process operating time (days): 165.25 Total days on waste: 162.47 Total days on fuels: 2.78 # <u>Section IV – Summary Report – Gaseous and Opacity Excess Emissions and CMS</u> <u>Performance</u> ## A. Report Date and Submittal Reporting Period Indicate the reporting period covered by this submittal and the date of this summary report. (63.10(e)(3)(vi)) | Reporting Period beginning date | Reporting Period ending date | Summary Report Date | |---------------------------------|------------------------------|---------------------| | July 1, 2013 | December 31, 2013 | January 31, 2014 | ## **B. Process Description and Monitoring Equipment Information** Complete the following process description and monitoring equipment information table for each affected source process unit: | Total operating time of affected source during the reporting period (days) | |--| | 233,968 minutes of unit burning/ retaining hazardous waste; 3,999 minutes on virgin fuels. | | | Process unit name | |---------------------------------|-------------------| | Rotary Kiln Incineration System | | | Process unit description | | |---|--| | Rotary kiln and ancillary equipment for combustion of hazardous wastes. | | Emission and/or operating parameter limitations specified in the relevant standards See Table 1 and 2 below. ## TABLE 1 - APPLICABLE EMISSIONS STANDARDS | Emissions Parameter | Limit | Citation | |--|----------------------------------|--------------------------| | Destruction and Removal Efficiency (DRE) | ≥99.99% | 40 CFR 63.1203(c)(1) | | PCDDs/PCDFs | ≤0.20 ng/dscm TEQ basis | 40 CFR 63.1219(a)(1)(i) | | HCI/Cl ₂ | ≤ 32 ppmv dry as HCl | 40 CFR 63.1219(a)(6) | | Mercury | ≤ 130 µg/dscm | 40 CFR 63.1219(a)(2) | | Semi volatile Metals (SVM) | ≤ 230 µg/dscm | 40 CFR 63.1219(a)(3) | | Low Volatile Metals (LVM) | ≤ 92 µg/dscm | 40 CFR 63.1219(a)(4) | | Totals Hydrocarbons | ≤ 10 ppmv | 40 CFR 63.1219(a)(5)(ii) | | Particulate Matter (PM) | ≤ 0.013 gr/dscf or
34 mg/dscm | 40 CFR 63.1219(a)(7) | ## **TABLE 2 - OPERATING PARAMETERS** | Process Parameter (Tag ID) | Units | Avg.
Period | Basis | Limit | |---|----------|----------------|--|--------| | Minimum Feed Lance Atomization
Pressure ¹ | Psig | Instant. | Mfg. Rec. | 30 | | Maximum SCC Pressure (PT-4307 & PT-4308) | In. w.c. | | eptember 4, 2003
of concerning this | | | Maximum Temperature at ESP Inlet (TI-6002A/B) | ۰F | I-hr | CPT | 424 | | Maximum Pumpable Waste Feed Rate
(WQI-9000T) | Lb/hr | I-hr | CPT | 29,926 | | Maximum Total Waste Feed Rate (WQI-9000F) | Lb/hr | I-hr | CPT | 35,069 | | Minimum Kiln Temperature (TI-
4300A/B) | °F | 1-hr | CPT | 1,718 | | Minimum SCC Temperature (TI-
4310A/B) | ۰F | 1-hr | СРТ | 1,747 | | Maximum Process Gas Flow rate (FI-7510A/B) | Sefm | 1-hr | CPT | 67,505 | | Minimum Loc. 1 Carbon Feed Rate (WI-7003) | Lb/hr | 1-hr | CPT | | | Minimum Loc. 2 Carbon Feed Rate (WI-7002) | Lb/hr | 1-hr | CPT | | ¹ Each liquid lance has a pressure switch. When the pressure drops below 30 psig on any lance the feed from that lance will be automatically cutoff. Tag Ids: PSL-3113 (High BTU), PSL-3123 (Organic), PSL-3143 (Aqueous), PSL-3133 (Sludge), PSL-3153 (Slurry), and PSL-3100A/B (Sludge 2). Page 19 of 30 | Process Parameter (Tag ID) | Units | Avg.
Period | Basis | Limit | |---|---|--|--|---| | Minimum Loc. I Carbon Feed Pressure
(PI-5732) | Psig | 1-hr | СРТ | 3.0 | | Minimum Loc. 2 Carbon Feed Pressure
(PI-7132) | Psig | 1-hr | СРТ | 3.0 | | Maximum Ash Feed Rate (WQI-9000AH) | Lb/hr | 12-hr | CPT | 10,333 | | Minimum Ring Jet Pressure Drop (DPI-7401) | in. w.c. | 1-hr | CPT | 28.0 | | Minimum Scrubber (1 st and 2 nd Packed
Bed, combined) Liquid Flow Rate (FQI-
7201) | gpm | I-hr | CPT | 1,287 | | Minimum Scrubber (Ring Jet) Liquid
Flow Rate (FI-7404A/B) | gpm | 1-hr | СРТ | 446 | | Minimum Scrubber (Ring Jet)
Blowdown (Fl-7403) | gpm | 1-hr | СРТ | 19.5 | | | | 20000 | CPT | 190 | | Minimum Scrubber (Ring Jet) Tank
Level (LIC-7401) | feet | 1-hr | CIT | 1.7 | | | The ESP is points of 4 and minim | operating wit
5,000 volts and
um current of | h all fields available
d 90 sparks per min
100 milliamps, eacl
0 and Dec. 27, 2003 | e with set
ute, each field
h field (see US | | Level (LIC-7401) | The ESP is points of 4 and minim | operating wit
5,000 volts and
um current of | h all fields available
d 90 sparks per min
100 milliamps, eacl | e with set
ute, each field
h field (see US | | Level (LIC-7401) ESP Parameters Minimum Scrubber (1 st and 2 nd Packed | The ESP is points of 4 and minim EPA letters | operating wit
5,000 volts and
um current of
s dated Dec. 10 | h all fields available
d 90 sparks per min
100 milliamps, each
0 and Dec. 27, 2003 | e with set
ute, each field
h field (see US | | Level (LIC-7401) ESP Parameters Minimum Scrubber (1 st and 2 nd Packed Bed, combined) Feed Pressure Minimum Scrubber (1 st and 2 nd Packed | The ESP is points of 4 and minim EPA letters in. w.c. | operating wit
5,000 volts an
um current of
s dated Dec. 10 | h all fields available
d 90 sparks per min
100 milliamps, each
0 and Dec. 27, 2003
Mfg. Rec. | e with set
ute, each field
h field (see US
s). | | Level (LIC-7401) ESP Parameters Minimum Scrubber (1 st and 2 nd Packed Bed, combined) Feed Pressure Minimum Scrubber (1 st and 2 nd Packed Bed) Pressure Drop Minimum Scrubber (3 rd Stage) Liquid pH | The ESP is points of 4 and minim EPA letters in. w.c. | s operating wit
5,000 volts and
um current of
s dated Dec. 10
1-hr | h all fields available d 90 sparks per min 100 milliamps, each and Dec. 27, 2003 Mfg. Rec. Mfg. Rec. | e with set
ute, each field
h field (see US
).
Not Req'd | | Level (LIC-7401) ESP Parameters Minimum Scrubber (1 st and 2 nd Packed Bed, combined) Feed Pressure Minimum Scrubber (1 st and 2 nd Packed Bed) Pressure Drop Minimum Scrubber (3 rd Stage) Liquid pH (AI-7307A/B) Maximum Total Chlorine Feed Rate | The ESP is points of 4 and minim EPA letters in. w.c. in. w.c. | operating wit
5,000 volts and
um current of
s dated Dec. 10
1-hr | h all fields available d 90 sparks per min 100 milliamps, each and Dec. 27, 2003 Mfg. Rec. Mfg. Rec. Prior Testing | with set ute, each field in field (see US). Not Req'd 1.3 | | Level (LIC-7401) ESP Parameters Minimum Scrubber (1 st and 2 nd Packed Bed, combined) Feed Pressure Minimum Scrubber (1 st and 2 nd Packed Bed) Pressure Drop Minimum Scrubber (3 rd Stage) Liquid pH (AI-7307A/B) Maximum Total Chlorine Feed Rate (WQI-9000CL) Maximum Total Semi volatile Metals | The ESP is points of 4 and minim EPA letters in. w.c. in. w.c. pH units Lb/hr | s operating wit
5,000 volts and
um current of
s dated Dec. 10
1-hr
1-hr | h all fields available d 90 sparks per min 100 milliamps, each and Dec. 27, 2003 Mfg. Rec. Mfg. Rec. Prior Testing Prior Testing | with set ute, each field in field (see US). Not Req'd 1.3 7.6 2,032 | | Level (LIC-7401) ESP Parameters Minimum Scrubber (1 st and 2 nd Packed Bed, combined) Feed Pressure Minimum Scrubber (1 st and 2 nd Packed Bed) Pressure Drop Minimum Scrubber (3 rd Stage) Liquid pH (AI-7307A/B) Maximum Total Chlorine Feed Rate (WQI-9000CL) Maximum Total Semi volatile Metals Feed Rate (WQI-9000SV) Maximum Total Low Volatile Metals | The ESP is points of 4 and minim EPA letters in. w.c. in. w.c. pH units Lb/hr | s operating wit 5,000 volts and um current of s dated Dec. 16 1-hr 1-hr 1-hr 12-hr | h all fields available d 90 sparks per min 100 milliamps, each 0 and Dec. 27, 2003 Mfg. Rec. Mfg. Rec. Prior Testing Prior Testing Prior Testing | e with set ute, each field in field (see US). Not Req'd 1.3 7.6 2,032 83.2 | | Level (LIC-7401) ESP Parameters Minimum Scrubber (1 st and 2 nd Packed Bed, combined) Feed Pressure Minimum Scrubber (1 st and 2 nd Packed Bed) Pressure Drop Minimum Scrubber (3 rd Stage) Liquid pH (AI-7307A/B) Maximum Total Chlorine Feed Rate (WQI-9000CL) Maximum Total Semi volatile Metals Feed Rate (WQI-9000SV) Maximum Total Low Volatile Metals Feed Rate (WQI-9000LV) Maximum Total Pumpable Low Volatile | The ESP is points of 4 and minim EPA letters in. w.c. in. w.c. pH units Lb/hr Lb/hr | I-hr I-hr I2-hr 12-hr | h all fields available d 90 sparks per min 100 milliamps, each and Dec. 27, 2003 Mfg. Rec. Mfg. Rec. Prior Testing Prior Testing Prior Testing Prior Testing | with set ute, each field field (see US). Not Req'd 1.3 7.6 2,032 83.2 | # **Monitoring Equipment Information** | Monitored Parameter | Instrument Description | Range and Units | Tag Number | Last
Calibration/Audit
Date | Accuracy of Measurement |
--|--|------------------|------------|-----------------------------------|-------------------------| | Power -ESP Field #1 | Environmental
Elements Controller | 0 – 500 ma | EI-6700 | 5/28/2013 | N/A | | Power -ESP Field #2 | Environmental
Elements Controller | 0 - 500 ma | El-6710 | 5/28/2013 | N/A | | Power -ESP Field #3 | Environmental
Elements Controller | 0 – 750 ma | EI-6720 | 5/28/2013 | N/A | | Scrubber Second Packed
Bed Liquid PH | Electro-Chemical
Devices | 0 – 14 pH units | AT-7307A | Performed
Weekly | ± 5% of range | | Scrubber Second Packed
Bed Liquid PH | Electro-Chemical
Devices | 0 – 14 pH units | AT-7307B | Performed
Weekly | ± 5% of range | | Scrubber 2nd Packed Bed
Differential Pressure | Rosemount
Transmitter /Pressure
transducer | 0 – 8 in w.c. | DPT-7307 | 7/22/2013 | ± 2% of range | | Pumpable Feed Rate
High BTU Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3110 | 6/14/2013 | ± 10% of range | | Pumpable Feed Rate
Organic Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3120 | 6/13/2013 | ± 10% of range | | Pumpable Feed Rate
Sludge Lance | Positive
displacement pump
(calculation) | 0 – 15,000 lb/hr | FT-3130 | Not Applicable
(calculation) | N/A | | Pumpable Feed Rate
Aqueous Lance | Micromotion Mass
Flow Meter | 0 – 10,000 lb/hr | FT-3140 | 6/13/2013 | ± 10% of range | | Pumpable Feed Rate
Slurry Lance | Positive
displacement pump
(calculation) | 0 – 15,000 lb/hr | FT-3150 | Not Applicable
(calculation) | N/A | | Scrubber First Packed bed flow rate | PolySonics Doppler
Flow | 0 – 1,500 gpm | FT-7204A | 6/13/2013 | ± 10% of range | | Monitored Parameter | Instrument
Description | Range and Units | Tug Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | |---|---|-----------------|------------|-----------------------------------|----------------------------| | Scrubber First Packed bed flow rate | Panametrics
Ultrasonic Flow | 0 – 1,500 gpm | FT-7204B | 6/13/2013 | ± 10% of range | | Scrubber Second Packed
bed flow rate | PolySonics Doppler
Flow | 0 – 1,500 gpm | FT-7304A | 6/13/2013 | ± 10% of range | | Scrubber Second Packed
bed flow rate | Panametrics
Ultrasonic Flow | 0 – 1.500 gpm | FT-7304B | 6/13/2013 | ± 10% of range | | Ring Jet Blow Down | Panametrics
Ultrasonic Flow | 0 – 500 gpm | FT-7403A | 6/13/2013 | ± 10% of range | | Ring Jet Blow Down | Panametrics
Ultrasonic Flow | 0 – 500 gpm | FT-7403B | 6/13/2013 | ± 10% of range | | Scrubber Ring Jet Liquid
Flow Rate | Panametrics
Ultrasonic Flow | 0 – 1,500 gpm | FT-7404A | 6/13/2013 | ± 10% of range | | Scrubber Ring Jet Liquid
Flow Rate | Panametrics
Ultrasonic Flow | 0 – 1,500 gpm | FT-7404B | 6/13/2013 | ± 10% of range | | Ring Jet Vessel Level | Rosemount
Transmitter/ Pressure | 0 – 5 feet | LT-7401A | 7/22/2013 | ± 2% of range | | Ring Jet Vessel Level | Rosemount
Transmitter/ Pressure | 0 – 5 feet | LT-7401B | 7/22/2013 | ± 2% of range | | Kiln Inlet Shroud
(differential) Pressure
(reference to SCC) | Rosemount Pressure
transducer | 0 - 10 in. w.c. | PDT-4305 | 7/18/2013 | ± 2% of range | | Kiln Outlet Shroud
(differential) Pressure
(reference to SCC) | Rosemount Pressure
transducer | 0 - 10 in. w.c. | PDT-4306 | 7/18/2013 | ± 2% of range | | Kiln Inlet Shroud Pressure
(reference to ambient) | Rosemount Pressure
transducer | 0 - 10 in. w.c. | PT-4307 | 7/22/2013 | ± 2% of range | | Scrubber 1st Packed Bed
Differential Pressure | Rosemount
Transmitter/Pressure
transducer | 0 – 8 in w.c. | PDT-7207 | 7/22/2013 | ± 2% of range | | | Approximate the second | 100 | | | | |--|---|----------------------------------|------------------------|-----------------------------------|----------------------------| | Monitored Parameter | Instrument
Description | Range and Units of Measurement | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | | Ring Jet Differential
Pressure | Rosemount
Transmitter/ Pressure | 0 – 40 in w.c.
(changed 2005) | PDT-7401A
PDT-7405A | 7/18/2013 | ± 2% of range | | Ring Jet Differential
Pressure | Rosemount
Transmitter/ Pressure | 0 – 40 in w.c.
(changed 2005) | PDT-7401B
PDT-7405B | 7/17/2013 | ± 2% of range | | Sludge 2 Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3100A | 7/17/2013 | ± 5% of range | | Sludge 2 Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3100B | 7/17/2013 | ± 5% of range | | High Btu Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3113 | 7/17/2013 | ± 5% of range | | Organic Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3123 | 7/17/2013 | ± 5% of range | | Sludge Lance Atomizing
Pressure | Generic pressure switch | 0 – 50 psi | PSL-3133 | 7/17/2013 | ± 5% of range | | Aqueous Lance Atomizing
Pressure | Generic pressure switch | 0 – 50 psi | PSL-3143 | 7/17/2013 | ± 5% of range | | Slurry Lance Atomizing
Pressure | Generic pressure
switch | 0 – 50 psi | PSL-3153 | 7/17/2013 | ± 5% of range | | Kiln / Secondary
Combustion Chamber
Pressure | Rosemount
Transmitter /
Pressure transducer | -3.5 - +2.5 in.
w.c. | PT-4300A | WFCO Test done
every 3 weeks | ± 2% of range | | Kiln / Secondary
Combustion Chamber
Pressure | Rosemount
Transmitter /
Pressure transducer | -3.5 - +2.5 in.
w.c. | PT-4300B | WFCO Test done
every 3 weeks | ± 2% of range | | Spray Dryer Carbon
Carrier Fluid Pressure | Rosemount
Transmitter /
Pressure | 0 – 15 psi | PT-5732 | 7/20/2013 | ± 2% of range | | Scrubber Carbon Carrier
Fluid Pressure | Rosemount
Transmitter /
Pressure | 0 – 15 psi | PT-7132 | 7/20/2013 | ± 2% of range | | | | | | and the same of th | | |---|--|-----------------|----------------------
--|----------------------------| | Monitored Parameter | Instrument
Description | Range and Units | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | | ESP Inlet Temperature | Rosemount
Transmitter /
Thermocouple | 0 - 600 °F | TT-6002A | WFCO Test done
every 3 weeks | ± 2% of range | | ESP Inlet Temperature | Rosemount
Transmitter /
Thermocouple | 0 - 600 °F | TT-6002B | WFCO Test done
every 3 weeks | ± 2% of range | | Kiln Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4300A | 3/14/2013 | ± 1% of range | | Kiln Temperature | Land CD1
Thermometer | 752 – 3272 °F | TT-4300B | 8/23/2013 | ± 1% of range | | Secondary Combustion
Chamber Temperature | Land CD1
Thermometer | 752 - 3272 °F | TT-4310A | 7/22/2013 | ± 1% of range | | Secondary Combustion
Chamber Temperature | Land CDI
Thermometer | 752 – 3272 °F | TT-4310B | 2/20/2013 | ± 1% of range | | Pumpable Feed Rate
Direct Drum Scale A | Generic Load Cell
(Loss in weight
calculation) | 0 – 5,000 lb | WT-3050 | 12/14/2013 | ± 3% of range | | Pumpable Feeds
Direct Drum Scale B | Generic Load Cell
(Loss in weight
calculation) | 0 - 5,000 lb | WT-3055 | 12/14/2013 | ± 3% of range | | Pumpable FeedsTanker
Scale A (South Bay) | Generic Load Cell.
Loss in weight
calculation | 0 – 80,000 lb | WT-3060 | 12/14/2013 | ± 3% of range | | Pumpable Feeds
Tanker Scale B (East Bay) | Generic Load Cell.
Loss in weight
calculation | 0 - 100,000 lb | WT-3065 | 12/14/2013 | ± 3% of range | | Conveyor Scale Drum
Processing | Generic Load Cell
(Scale) | 0 - 2,000 lb | WT-3070
ARTS Data | 12/14/2013 | ± 3% of range | | Splitting Scale Drum
Processing | Generic Load Cell
(Scale) | 0 – 5,000 lb | WT-3075
ARTS Data | 12/14/2013 | ± 3% of range | | Floor Scale Drum
Processing Lab Pack | Generic Load Cell
(Scale) | 0 - 2,000 lb | WT-3080
ARTS Data | 12/14/2013 | ± 3% of range | | Monitored Parameter | Instrument
Description | Range and Units | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | |---|---|--|------------|-----------------------------------|--| | Kiln Bulk Feed Crane | Generic Load Cell
(Scale) | 0 – 10,000 lb | WT-3105 | 12/14/2013 | ± 3% of range | | Scrubber Carbon Feed Rate | Generic Load Cell /
Loss in Weight
Feeder | 0 – 50 lb/hr | WT-7002 | 12/14/2013 | ± 1% of range | | Spray Dryer Carbon Feed
Rate | Generic Load Cell /
Loss in Weight
Feeder | 0 – 50 lb/hr | WT-7003 | 12/14/2013 | ± 1% of range | | Total Hydrocarbon
Analyzer (Stack) | California Analytical
Instruments, Inc. | 0 – 100 ppm
0 – 500 ppm
as Propane | AI-7850A | 11/21/2013 | £ ± 5% of span | | Total Hydrocarbon
Analyzer (Stack) | California Analytical
Instruments, Inc. | 0 – 100 ppm
0 – 500 ppm
as Propane | AI-7850B | 11/21/2013 | £ ± 5% of span | | Stack Oxygen Analyzers
(dry) | Ametek | 0 – 25 % | AI-7860A | 11/21/2013 | ± 1.0% Oxygen | | Stack Oxygen Analyzers
(dry) | Ametek | 0 - 25 % | AI-7860B | 11/21/2013 | ± 1.0% Oxygen | | Stack Oxygen Analyzers
(wet) | Ametek | 0 – 25 % | AI-7865A | 11/21/2013 | ± 1.0% Oxygen | | Stack Oxygen Analyzers
(wet) | Ametek | 0-25 % | AI-7865B | 11/21/2013 | ± 1.0% Oxygen | | Flue Gas Flow Rate
(Scrubber Outlet) | Calculation
Stack - Reheat Flow | 0 – 80,000 scfm | FT-7510A | 11/21/2013 | < 15% relative
accuracy or < 7.5% of
the applicable standard | | Flue Gas Flow Rate
(Scrubber Outlet) | United Sciences
UltraSonic Gas Flow | 0 – 80,000 scfm | FT-7510B | 11/21/2013 | < 15% relative
accuracy or < 7.5% of
the applicable standard | | Flue Gas Flow Rate (Stack) | United Sciences
UltraSonic Gas Flow | 0 - 100,000 scfm | FT-7805A | 11/21/2013 | < 15% relative
accuracy or < 7.5% of
the applicable standard | | Monitored Parameter | Instrument
Description | Range and Units | Tag Number | Last
Calibration/Audit
Date | Accuracy of
Measurement | |----------------------------|---|------------------|------------|-----------------------------------|--| | Flue Gas Flow Rate (Stack) | Calculation
Process + Reheat
Flow | 0 – 100,000 scfm | FT-7805B | 11/21/2013 | < 15% relative
accuracy or < 7.5% of
the applicable standard | ## C. Emission Data Summary Complete the following emission data summary table for each affected source: (63.10(e)(3)(vi)(1)) Total duration of excess emission / parameter exceedances (minutes for opacity, hours for gases) | Excess Emissions | Total
Duration(min) | Total Operating time of affected source during the reporting period (min) | % Of total source operating time during which excess emissions occurred | |---|------------------------|---|---| | Maximum Ash Feed Rate (WQI-
9000AH) | 0 | 237,967 | 0.00% | | Maximum Process Gas Flowrate (FI-7510A/B) | 114.49 | 237,967 | 0.05% | | Maximum Pumpable Waste Feed
Rate (WQI-9000T) | 0 | 237,967 | 0.00% | | Maximum SCC Pressure (PI-
4300A/B) | 2.54 | 237,967 | 0.00% | | Maximum Temperature at ESP Inlet (TI-6002A/B) | 0 | 237,967 | 0.00% | | Maximum Total Chlorine Feed Rate (WQI-9000CL) | 0 | 237,967 | 0.00% | | Maximum Total Low Volatile Metals
Feed Rate (WQI-9000LV) | 0 | 237,967 | 0.00% | | Maximum Total Mercury Feed Rate (WQI-9000M) | 0 | 237,967 | 0.00% | | Maximum Total Pumpable Low
Volatile Metals Feed Rate (WQI-
9000PLV) | 0 | 237,967 | 0.00% | | Maximum Total Semi volatile Metals
Feed Rate (WQI-9000SV) | 0 | 237,967 | 0.00% | | Maximum Total Waste Feed Rate
(WQI-9000F) | 0 | 237,967 | 0.00% | | Minimum Feed Lance Atomization
Pressure | 1.36 | 237,967 | 0.00% | | Minimum Kiln Temperature (TI-
4300A/B) | 193.57 | 237,967 | 0.08% | | Minimum Loc. 1 Carbon Feed
Pressure (PI-5732) | 0 | 237,967 | 0.00% | | Excess Emissions | Total
Duration(min) | Total Operating time of
affected source during the
reporting period (min) | % Of total source operating time during which excess emissions occurred | |--|------------------------|---|---| | Minimum Loc. 2 Carbon Feed
Pressure (PI-7132) | 203.43 | 237,967 | 0.09% | | Minimum Loc. 1 Carbon Feed Rate
(WI-7003) | 70.89 | 237,967 | 0.03% | | Minimum Loc. 2 Carbon Feed Rate (WI-7002) | 0 | 237,967 | 0.00% | | Minimum Ring Jet Pressure Drop
(DPI-7401) | 214.76 | 237,967 | 0.09% | | Minimum SCC Temperature (TI-
4310A/B) | 287.61 | 237,967 | 0.12% | | Minimum Scrubber (1st and 2nd Packed Bed) Pressure Drop | 0 | 237,967 | 0.00% | | Minimum Scrubber (1 st and 2 ^{ftd}
Packed Bed, combined) Liquid Flow
Rate (FQI-7201) | 63.16 | 237,967 | 0.03% | | Minimum Scrubber (3 rd Stage) Liquid pH (AI-7307A/B) | 65.97 | 237,967 | 0.03% | | Minimum Scrubber (Ring Jet)
Blowdown (FI-7403) | 4.04 | 237.967 | 0.00% | | Minimum Scrubber (Ring Jet) Liquid
Flow Rate (FI-7404A/B) | 0 | 237,967 | 0.00% | | Minimum Scrubber (Ring Jet) Tank
Level (LIC-7401) | 0 | 237,967 | 0.00% | | THC | 2141.42 | 237,967 | 0.90% | | ESP Controls | 0 | 237,967 | 0.00% | | Total Duration | 3363.24 | 237,967 | 1.41% | Summary of causes of excess emissions / parameter exceedances (% of total duration by cause): | ТҮРЕ |
Sum Of Duration | % of Total Duration | |----------------------------|-----------------|---------------------| | Startup/shutdown | 625.98 | 18.61% | | Control Equipment Problems | 625.4 | 18.60% | | Process Problems | 463.59 | 13.78% | | Other unknown causes | 387.35 | 11.52% | | Other known causes | 1260.92 | 37.49% | | | 3363.24 | 100.00% | #### D. CMS Performance Summary Complete the following CMS performance summary table for each affected source: (63.10(e)(3)(vi)(J)) | Total duration of CMS downtime ¹ | | | |---|---|--| | 0 minutes | | | | A The Trans | Total operating time of affected source during the reporting period | | | | | | | | Percent of total source operating time during which CMS were down | | |--------|---|--| | 0.00 % | | | ¹ Heritage Thermal Services maintains redundant CMS equipment in most cases to prevent CMS downtime. There were no periods during this time that this redundancy did not prevent CMS downtime. | Summary of causes of CMS downtime (percent of downtime by cause) | Minutes | |--|---------| | Monitoring equipment malfunctions | 0 | | Non-monitoring equipment malfunctions | 0 | | Quality assurance / quality control calibrations | 0 | | Other known causes | 0 | | Other unknown causes | 0 | ## E. CMS, Process, or Control Changes 1. Have you made any changes in CMS, processes, or controls since the last reporting period? \square Yes \square No (if no, end of form) (63.10(2)(3)(vi)(K)) 2. If you answered yes, please describe the changes below: #### **END OF REPORT** bcc: Env. Dept Stewart Fletcher **Bob Buchheit** Kevin Lloyd file name: environ/MACT/HWC MACT/exceedances/semiannual2013b ECF: 2013/MACT/ Semiannual B